The Visual Object Tracking VOT2014 Challenge Results

نویسندگان

  • Matej Kristan
  • Roman P. Pflugfelder
  • Ales Leonardis
  • Jiri Matas
  • Luka Cehovin
  • Georg Nebehay
  • Tomás Vojír
  • Gustavo Fernández
  • Alan Lukezic
  • Aleksandar Dimitriev
  • Alfredo Petrosino
  • Amir Saffari
  • Bo Li
  • Bohyung Han
  • CherKeng Heng
  • Christophe Garcia
  • Dominik Pangersic
  • Gustav Häger
  • Fahad Shahbaz Khan
  • Franci Oven
  • Horst Possegger
  • Horst Bischof
  • Hyeonseob Nam
  • Jianke Zhu
  • Jijia Li
  • Jin Young Choi
  • Jin-Woo Choi
  • João F. Henriques
  • Joost van de Weijer
  • Jorge Batista
  • Karel Lebeda
  • Kristoffer Öfjäll
  • Kwang Moo Yi
  • Lei Qin
  • Longyin Wen
  • Mario Edoardo Maresca
  • Martin Danelljan
  • Michael Felsberg
  • Ming-Ming Cheng
  • Philip H. S. Torr
  • Qingming Huang
  • Richard Bowden
  • Sam Hare
  • Samantha YueYing Lim
  • Seunghoon Hong
  • Shengcai Liao
  • Simon Hadfield
  • Stan Z. Li
  • Stefan Duffner
  • Stuart Golodetz
  • Thomas Mauthner
  • Vibhav Vineet
  • Weiyao Lin
  • Yang Li
  • Yuankai Qi
  • Zhen Lei
  • Zhi Heng Niu
چکیده

The Visual Object Tracking challenge 2014, VOT2014, aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 38 trackers are 2 Authors Suppressed Due to Excessive Length presented. The number of tested trackers makes VOT 2014 the largest benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the appendix. Features of the VOT2014 challenge that go beyond its VOT2013 predecessor are introduced: (i) a new VOT2014 dataset with full annotation of targets by rotated bounding boxes and per-frame attribute, (ii) extensions of the VOT2013 evaluation methodology, (iii) a new unit for tracking speed assessment less dependent on the hardware and (iv) the VOT2014 evaluation toolkit that significantly speeds up execution of experiments. The dataset, the evaluation kit as well as the results are publicly available at the challenge website.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Object Tracking Challenge (VOT2014) Evaluation Kit

1 How to participate in the VOT2014 challenge 2 1.1 General requirements for participation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Levels of participation: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Participating at VOT2014 workshop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.4 Going beyond VOT20...

متن کامل

Visual Tracking using Learning Histogram of Oriented Gradients by SVM on Mobile Robot

The intelligence of a mobile robot is highly dependent on its vision. The main objective of an intelligent mobile robot is in its ability to the online image processing, object detection, and especially visual tracking which is a complex task in stochastic environments. Tracking algorithms suffer from sequence challenges such as illumination variation, occlusion, and background clutter, so an a...

متن کامل

Deformable Parts Correlation Filters for Robust Visual Tracking

Deformable parts models show a great potential in tracking by principally addressing nonrigid object deformations and self occlusions, but according to recent benchmarks, they often lag behind the holistic approaches. The reason is that potentially large number of degrees of freedom have to be estimated for object localization and simplifications of the constellation topology are often assumed ...

متن کامل

A multi-view model for visual tracking via correlation filters

Robustness and efficiency are the two main goals of existing trackers. Most robust trackers are implemented with combined features or models accompanied with a high computational cost. To achieve a robust and efficient tracking performance, we propose a multi-view correlation tracker to do tracking. On one hand, the robustness of the tracker is enhanced by the multi-view model, which fuses seve...

متن کامل

Visual Tracking using Kernel Projected Measurement and Log-Polar Transformation

Visual Servoing is generally contained of control and feature tracking. Study of previous methods shows that no attempt has been made to optimize these two parts together. In kernel based visual servoing method, the main objective is to combine and optimize these two parts together and to make an entire control loop. This main target is accomplished by using Lyapanov theory. A Lyapanov candidat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014